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The partially cavitating two-dimensional hydrofoil problem is treated using nonlinear 
theory by employing a low-order potential-based boundary-element method. The 
cavity shape is determined in the framework of two independent boundary-value 
problems; in the first, the cavity length is specified and the cavitation number is 
unknown, and in the second the cavitation number is known and the cavity length is 
to be determined. In each case, the position of the cavity surface is determined in an 
iterative manner until both a prescribed pressure condition and a zero normal velocity 
condition are satisfied on the cavity. An initial approximation to the nonlinear cavity 
shape, which is determined by satisfying the boundary conditions on the hydrofoil 
surface rather than on the exact cavity surface, is found to differ only slightly from the 
converged nonlinear result. 

The boundary element method is then extended to treat the partially cavitating 
three-dimensional hydrofoil problem. The three-dimensional kinematic and dynamic 
boundary conditions are applied on the hydrofoil surface underneath the cavity. The 
cavity planform at a given cavitation number is determined via an iterative process 
until the thickness at the end of the cavity at all spanwise locations becomes equal to 
a prescribed value (in our case, zero). Cavity shapes predicted by the present method 
for some three-dimensional hydrofoil geometries are shown to satisfy the dynamic 
boundary condition to within acceptable accuracy. The method is also shown to 
predict the expected effect of foil thickness on the cavity size. Finally, cavity planforms 
predicted from the present method are shown to be in good agreement to those 
measured in a cavitating three-dimensional hydrofoil experiment, performed in MIT’s 
cavitation tunnel. 

1. Introduction 
Modelling cavitating or free streamline flows has been the subject of much research 

for at least a century. Originally, free streamline flows were used to model the separated 
flow in the wake of bluff bodies to provide estimates for bluff body drag. Since then, 
in many engineering applications - particularly hydrofoils, liquid pumps and marine 
propellers - cavitation has been a subject of research because it is an undesirable 
phenomenon. This is due mainly to the detrimental effects (e.g. structural failure, 
corrosion, and noise radiation) of collapsing vapour bubbles. In the past, the goal in 
the hydrodynamic design of all these water devices was to avoid cavitation by shaping 
the geometry appropriately so that the pressure everywhere is higher than the 
cavitation inception pressure. However, recent marine applications have seen an 
increasing demand for higher boat speeds and lower fuel consumption, with the result 
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that hydrofoil or propeller cavitation is often unavoidable. It has hence become the 
task of the hydrodynamicist to predict the cavitation characteristics of these lifting 
surfaces and propulsors at the design stage, so that the worst characteristics may be 
avoided in an appropriate range of ship speed, r.p.m. or propeller thrust. 
Computational tools for the reliable prediction of hydrofoil and propeller cavitation 
are therefore in high demand. In particular, a type of cavitation that is very common 
on marine propellers is sheet cavitation, in which a distinct thin vapour bubble is 
attached to the blade surface. Other types of cavitation which also occur include cloud 
and bubble cavitation. However, this work addresses the computational analysis of 
sheet hydrofoil cavitation only. 

The main difficulty in the analysis of cavitating flows arises from the need to 
determine the free streamline (the cavity surface) on which the pressure is prescribed. 
The fact that the location of a portion of the flow boundary is unknown is one 
contribution to the nonlinearity of the problem. In addition, there has been diversity 
in the methods of simulating the flow at the end of the cavity, whose nature is usually 
two-phase and turbulent. Several cavity closure models have been devised to represent 
this region, and among the most popular models have been those of Riabouchinsky, 
the re-entrant jet, the spiral vortex and the open wake. A description of these and other 
models may be found in Tulin (1964). 

Cavitating flows in two-dimensions were first addressed by employing the hodograph 
technique, as introduced by Helmholtz, Kirchoff and Levi-Civita see Birkhoff & 
Zarantonello (1957). However, due to the difficulty of applying the hodograph tech- 
nique to general shape geometries, only a few have been treated analytically (e.g. flat 
plate, circular and wedge geometries). This technique was extended numerically to treat 
arbitrary geometries by Wu & Wang (1964) and later applied by Furuya (1975~) to the 
analysis of supercavitating hydrofoils in the presence of a free surface. 

The linear theory for the analysis of the cavitating flow around two-dimensional 
hydrofoils at zero or non-zero cavitation number was introduced by Tulin (1953, 
1955). Linear theory was first applied to partially cavitating hydrofoils independently 
by Acosta (1955) and Geurst & Timman (1956). The linear cavity theory, which closely 
resembles the classical thin-wing theory, assumes thin cavity and foil thickness relative 
to the foil chord length and, as a result, simplifies the dynamic boundary condition 
from the requirement of constant total velocity to that of constant horizontal 
perturbation velocity. This boundary condition is applied, together with the linearized 
wetted surface kinematic boundary condition, on a projection of the hydrofoil surface 
on the free-stream axis. Linear cavity theory has been applied by several researchers for 
the analysis of partial and supercavitating flows around special and general shape two- 
dimensional hydrofoil geometries. A list of references which address the application of 
linear cavity theory may be found in Tulin & Hsu (1980) or Kinnas (1991). 

The flow around cavitating finite-span hydrofoils (also called three-dimensional 
hydrofoils in this work) was first treated in a stripwise sense with the three-dimensional 
flow effects introduced by matching the inner solution (in either linear or nonlinear 
theory) with the solution from lifting-line theory in the outer domain. This approach 
was used to study supercavitating hydrofoils by Nishiyama (1970), Leehey (1971) and 
Furuya (19753), partially cavitating hydrofoils by Uhlman (1978), and partially or 
supercavitating hydrofoils in unsteady flow by Van Houten (1982). However, this 
method is valid only for high-aspect-ratio hydrofoils and its accuracy deteriorates at 
the tips of the hydrofoil. The complete three-dimensional flow effects, in the context of 
linear cavity theory, were included in the analysis of supercavitating three-dimensional 
hydrofoils in unsteady flow by Widnall (1966), who employed a numerical pressure 
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doublet and source lifting-surface technique. Jiang & Leehey (1977) applied instead a 
discrete vortex and source lattice lifting-surface technique, and also introduced an 
iterative scheme for determining the cavity planform until a uniform cavitation number 
was achieved at all spanwise locations. This technique was then applied to the analysis 
of unsteady propeller cavitation by Lee (1979) and Breslin et al. (1982), who also 
introduced the ability to treat mixed cavity patterns in partial cavitation and 
supercavitation. 

Owing to the success of thin-wing theory in the analysis of fully wetted flows, one 
would assume that linear cavity theory would be appropriate for analysing hydrofoil 
or propeller sheet cavitation. However, a serious defect of the linear theory arises in the 
case of partially cavitating flows around hydrofoils with rounded leading edges. In 
particular, linear theory predicts that the cavity extent and volume should increase with 
increasing thickness provided that the flow conditions remain the same. On the other 
hand, the short-cavity theory of Tulin & Hsu (1980) and the numerical nonlinear 
surface vorticity method developed by Uhlman (1987), predict that the cavity size 
should decrease with increasing thickness. In addition, it is known from experimental 
evidence that increasing the leading-edge radius delays or reduces leading-edge 
cavitation. This defect of the linear cavity theory has recently been corrected by Kinnas 
(1991) who introduced the nonlinear leading-edge correction to account for the 
breakdown of the linear cavity solution in the vicinity of a round leading edge. This was 
accomplished by modifying the linearized dynamic boundary condition to one of 
varying horizontal perturbation velocity rather than constant velocity as required by 
the conventional linear cavity theory. The nonlinear blade thickness effects have also 
been included in the linearized method for the analysis of unsteady propeller 
cavitation, mentioned previously, by implementing the leading-edge correction locally 
at planes normal to the blade leading edge (Kerwin et al. 1986). 

The application of numerical methods for the nonlinear analysis of axisymmetric 
cavity flows was introduced by Brennen (1969) who utilized a finite-difference 
approach. However, since the flow is being treated as potential, boundary-element 
methods (BEMs) are more suitable. Various velocity-based BEMs have been applied 
for the analysis of the flow around two- and three-dimensional partially and 
supercavitating hydrofoils. These include methods by Pellone & Rowe (1981) for 
supercavitating three-dimensional hydrofoils, by Uhlman (1987,1989) for partially and 
supercavitating two-dimensional hydrofoils, and by Lemonnier & Rowe (1988), for 
partially cavitating two-dimensional hydrofoils. In each of these BEMs, the panels are 
placed on the cavity boundary, whose shape is determined by an iterative process 
which terminates when both the kinematic and the dynamic boundary conditions are 
satisfied. More recently, a potential-based boundary-element method (i.e. one based on 
Green’s third identity for the perturbation potential) was developed by Kinnas & Fine 
(1991) for the nonlinear analysis of the flow around partially and supercavitating two- 
dimensional hydrofoils. This method, when applied to partially cavitating hydrofoils 
(with the cavity length known and the cavitation number unknown) has been found to 
converge to the final cavity shape with fewer iterations than velocity-based BEMs. In 
particular, it has been found that the first step in the iterative method, in which the 
dynamic boundary condition is satisfied on the hydrofoil surface beneath the cavity, 
predicts a cavity shape which is very close to the correct nonlinear shape. 

In the present work, first the potential-based BEM is extended to predict the cavity 
extent and shape for two-dimensional partially cavitating hydrofoils at given cavitation 
number. The method is then applied in three dimensions, where the fully three- 
dimensional boundary conditions are satisfied on the foil surface beneath the cavity. 
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2. Partially cavitating two-dimensional hydrofoil 
2.1. Formulation 

Consider a partially cavitating hydrofoil of chord length c = 1 subject to a uniform 
inflow, U,, with ambient pressure, p,,  as shown in figure 1. The cavity detaches from 
the foil surface at point D (x = I D )  on the suction side of the foil and rejoins the foil 
at point L ( x  = I = cavity length). The pressure on the cavity surface is constant and 
equal to pc  between D and T. In the transition zone between T and L a cavity 
termination model is imposed, as will be described later in this section. The x- 
coordinate of the point T, xT, is defined in terms of the parameter h from the 
expression xT = (I  -A) 1. 

Assuming that the fluid is inviscid and incompressible, and that the resulting flow is 
irrotational, we can express the total velocity flow field, q, in terms of either the total 
potential, @, or the perturbation potential, 4, as 

(1) 

(2) 

q = V@ = u,+vq5. 

q5k v) = @(x, Y )  - @in(X, Y ) ,  

The total and perturbation potentials are related as follows: 

where the inflow velocity potential 
U ,  at an angle of attack a: 

corresponds to the uniform inflow of magnitude 

QSin(x, y )  = U,(x cos a + y  sin a). (3) 
The perturbation potential q5 will satisfy Laplace’s equation in the domain outside the 
cavity and hydrofoil 

In addition, the following boundary conditions on q5 are applied. 
(i) Kinematic boundary condition: the flow is required to be tangent to the wetted 

hydrofoil surface as well as to the cavity surface. If f i  is the unit normal to the hydrofoil 
or cavity surface directed into the fluid domain, then the kinematic boundary condition 
is given by 

vaq5 = 0. (4) 

on the wetted foil and cavity surface. 
(ii) Dynamic boundary condition on the cavity: the pressure is required to be 

constant on the cavity surface from D to T and equal to p e .  Applying Bernoulli’s 
equation and the definition of the cavitation number, cr 

the magnitude of the total velocity on the cavity, qc, is found to be constant: 

qc = Urn( 1 + cry. 
(iii) Kutta condition: 

(iv) Condition at infinity: 

Vq5 = finite; at the trailing edge. 

V$ + 0 at infinity. (9) 
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W 

Partially cavitating two-dimensional hydrofoil. The panel arrangement 
for N = 40 and N, = 8 is also shown. 

u ,  

FIGURE 1 

FIGURE 2. Cavity shapes at the current and next iteration. 

(v) Cavity termination model: a termination model must be applied at the end of the 
cavity. It may be chosen from a list of existing models, such as the Riabouchinsky 
model, the re-entrant jet model, the spiral vortex model, or the open viscous wake 
model. In the present work, we employ a cavity termination model in which the 
velocity (ie. pressure) in the transition zone (between T and L in figure 1) departs from 
its constant value on the cavity according to a prescribed law (Lemonnier & Rowe 
1988). In particular, we employ the following algebraic law for the velocity on the 
cavity: 

where sc, as shown in figure 2, is the arclength of the cavity andf(sf) is 

sf ST 

Here, sf is the arclength of the foil beneath the cavity measured from the cavity leading 
edge, and A (0 < A < 1) and v (v > 0) are arbitrary constants. In the future, v, h and 

6-2 
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A will be taken from experimental information at  the trailing edge of the cavity. The 
effect of h and v on the cavity shape has been shown in Kinnas & Fine (1991). Note, 
however, that the current pressure law differs slightly from the one in that paper, in that 
the velocity in the transition zone is attenuated to a fraction of the cavity velocity. 

In addition to the above boundary conditions, we will assume that the cavity height 
vanishes at its trailing edge (see $ 5  for discussion of this assumption): 

h(s,) = 0. 

For the chosen cavity termination model, a given cavity detachment location lD and 
cavity length I, equation (4) can be solved subject to the conditions (5), (S), (9), (10) and 
(12). The cavity shape and the corresponding cavitation number will then be 
determined from the solution. 

2.2. Cavity shape forjixed cavity length 
The boundary-value problem described in the previous section is most readily solved in 
the case where the cavity length, as well as its point of detachment, are known. The 
cavity shape and the corresponding cavitation number are unknown and will be 
determined by applying a potential-based boundary-element method. The method is 
described in detail in Kinnas & Fine (1991), but a condensed description is included here 
for completeness. 

The perturbation potential, $, must satisfy Green’s formula, a Fredholm integral 
equation of the second kind, on the foil and cavity: 

where S is the surface of the wetted foil or the cavity and W is the surface of the wake, 
as shown in figure 1. R is the distance from the surface element dS to the point p .  A$m 
is the potential jump in the wake. 

On the wetted part of the foil, the value of a$/& is known and given by (5 ) .  On the 
cavity, an expression for $ may be found by integrating (10): 

To numerically invert the integral equation (13), subject to the boundary conditions 
(5) and (14), the cavity and foil surfaces are discretized into N straight panels whose 
vertices lie on S.  N ,  of these panels are located on the cavity, while the remainder, 
Nw = N -  N,, lie on the wetted part of the foil (see figure 1). A full cosine spacing of the 
panel boundaries is implemented between the foil leading edge and the cavity trailing 
edge, and between the cavity trailing edge and the foil trailing edge, in order to 
concentrate more panels where sharp velocity gradients are expected. The continuous 
source and dipole distributions on each panel are approximated by constant strength 
distributions. Equation (13) is applied, in its discretized form, at the midpoints of the 
panels. The Kutta condition (8) is numerically implemented by employing Morino’s 
condition (Morino & Kuo 1974): 

A$w = $&-&’ (1 5) 
where 4; and 6; are the potentials at the upper and lower trailing-edge panels, 
respectively. 
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The unknowns to be determined from the N equations will be: N ,  dipole strengths, 
4, at the panels which represent the wetted part of the foil; N, source strengths, a$/an, 
at the panels which represent the cavity; the cavity velocity, qcy or equivalently (via (7)), 
the cavitation number g. Note that there are a total of N+1 unknowns to be 
determined. 

The cavity surface, and thus s,, is not known and in the present method will be 
determined iteratively. As a first iteration, the cavity panels are placed on the foil 
underneath the cavity. At each successive iteration the edges of the cavity panels are 
relocated on the updated cavity surface, which was computed at the end of the previous 
iteration. The cavity height (taken normal to the present iteration cavity surface, as 
shown in figure 2) is h, and it represents the amount by which the updated cavity 
surface has to be corrected. It can be shown that the following relationship is valid up 
to first order in h, (Kinnas & Fine 1991): 

Combining (12) and (16), we arrive at the cavity closure condition: 

where seL is the total arclength of the cavity surface, as shown in figure 2. 
Equation (17) provides the additional equation needed to determine the N + l  

unknowns. Once the solution is found and a$/an is known, the incremental cavity 
thickness h, can be determined by integrating (16). The new position of the cavity 
surface and the new arclength, sc, can then be determined and used in the next 
iteration. 

The value of 4(0) in (14) corresponds to the value of the perturbation potential at 
the detachment point of the cavity, labelled D in figure 1. #(O) is not known and in the 
present numerical scheme is expressed via a cubic extrapolation in terms of the 
unknown potentials on the wetted panels in front of the cavity. 

The numerical validation of the method is addressed extensively in Kinnas & Fine 
(1991). An application of the method to a particular case and the sequence of the cavity 
shapes and the corresponding cavitation numbers at different iterations are shown in 
figure 3. The cavity shape and cavitation number appear to be converged by the end 
of the second iteration, while even the results from the first iteration are very close to 
the converged ones. It has been shown in Kinnas & Fine (1991) that the convergence 
of the cavity shape predicted by the present method is much quicker than that of 
Uhlman’s (1 987) velocity-based boundary-element method. 

2.3. Cavity shape for fixed cavitation number 
The boundary-value problem considered in the previous section involved a two- 
dimensional cavity of known length and unknown cavitation number. A more natural 
problem, however, is the so-called ‘direct problem’, in which we have to determine the 
cavity extent and shape for given cavitation number. Such a problem has, for example, 
to be solved at each spanwise location of a three-dimensional hydrofoil (or propeller) 
to determine the three-dimensional cavity extent and shape at a given cavitation 
number, as will be described in 53. 

One obvious way of solving the direct problem in two dimensions is to solve the full 
nonlinear fixed-length problem at several cavity lengths, 1, and then interpolate for the 
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.-.-. first iteration solution - second-tenth iterations 
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0 2 4 6 8 10 

Iteration number 

FIGURE 3. Convergence of (a) cavity shape and (b) cavitation number with number of iterations 
for a NACA16006 hydrofoil at a = 4" and for fixed cavity length 1 = 0.4, I, = 0, h = 0.1, u = 1.0, 
A = 0.5. 

correct 1 at the given CT. However, solving the nonlinear problem many times is 
expensive, even for the present panel method in which the regridding of the cavity 
surface is rather minimal. Solving the problem in this manner would raise the 
computing time substantially, especially when applied to the prediction of unsteady 
hydrofoil or propeller cavitation. Our objective is to develop a general procedure for 
determining the nonlinear cavity shape requiring the least regridding. The proposed 
algorithm is described next. 

2.3.1. Cavity shape -$rst iteration - the split-panel technique 
For given cavitation number, CT, we start with a guess for the cavity length, 1. The foil 

and cavity are then discretized with the cavity panels located on the foil underneath it, 
as was done in the first iteration of the fixed-cavity-length problem. This problem, 
however, differs from that described in the previous section in that the cavitation 
number is known and thus its value is used in the expression for the potential on the 
cavity surface given by (14). Green's formula, (13), is still applied at the control points, 
but now there is no need to apply the closure condition (12), since the number of 
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FIGURE 4. NACA16006 hydrofoil at u = 4" and fixed cavitation number u = 1.097 (corresponding 
to the correct length 1 = 0.4). (b) The predicted cavity shapes for different guesses of I ,  (a) the resulting 
behaviour of 6 us. 1. The panels representing the cavity are located on the foil underneath it (first 
iteration). 

unknowns is reduced by one. Nonetheless, as expected, the cavity will not close at its 
trailing edge unless the cavity length corresponds to the prescribed cr. The thickness of 
the cavity at its end, 8, can be determined by integrating (16): 

6(1; F) = h,(SCL) = - 'Jy2 +- "4 - h c  

4 e  an 1 +Sf)' 

where 4 corresponds to the solution of the direct problem at cavity length 1. Note that 
s, = sf since within this phase the cavity panels are located on the foil surface. 

In figure 4(b) the cavity shapes are shown for a NACA16006 hydrofoil at an angle 
of attack of 4" and for different cavity length guesses. The cavitation number for each 
is cr = 1.097, which corresponds to the cavity length 1 = 0.4 from the first iteration of 
the fixed-length solution of 52.2. Notice that the cavity closes for the guess 1 = 0.4, as 
expected. Figure 4(a) shows the openness of the cavity at its trailing edge, 6, plotted 
versus the cavity length, 1. Notice that there appears to be only one solution for S = 0, 
provided that (unstable) cavity lengths greater than 1 x 0.75 are not allowed. 
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FIGURE 5. Depiction of the split-panel technique in two dimensions. 

A Newton-Raphson (secant method) technique is applied to determine the cavity 
length 1 from the solution of the equation 

&(I; .) = 0. (19) 

In order to avoid unstable cavities, only the solution with the shortest cavity length, for 
which dS/dl< 0, is accepted. The method typically takes 3 or 4 iterations to converge 
(with 161 < 5 x lop4) to the correct cavity length. 

For each new guess of the cavity length, the foil may be repanelled to maintain cosine 
spacing of the panel boundaries between the cavity trailing edge and the foil leading 
and trailing edges. This simplifies the Newton-Raphson iterations, since the trailing 
edge of the cavity always coincides with a panel boundary. However, as mentioned 
previously, repanelling would be very expensive and thus not desirable at this stage of the 
three-dimensional solution. We turn, then, to an alternative in which the panelling does 
not change, but the cavity trailing edge is not required to coincide with a panel 
boundary. Thus, in this method there is a single panel, located at the trailing edge of 
the cavity, which is partly cavitating and partly wetted (see figure 5). This panel will be 
referred to as the 'split' panel, since it is split by the cavity trailing edge. Green's 
formula (13) is not applied on the split panel. The source and dipole strengths on the 
split panel are defined as the weighted average of the strengths on the cavitating part 
of the panel and those on the wetted part of the panel, as follows: 

where the subscript L denotes the left side of the split panel and the subscript R denotes 
the right side. As shown in figure 5, IL and IR are the lengths of the left and right sides 
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of the split-panel, respectively. The quantities (a$/an), and $L are known from the 
boundary conditions, ( 5 )  and (14). The quantities @$/an),  and $R are unknown, but 
may be defined as extrapolations of the unknowns on adjacent panels (similar to the 
definition of $(O) in (14)). $, is defined by a four-point cubic extrapolation, while 
(a$/an), is defined by a one-point extrapolation assuming that (a$/an) (s) is 
characterized by a square-root singularity at the trailing edge of the cavity. Note that 
both the number of unknowns and the number of equations have been reduced by one. 

The first iteration cavity length and shape have thus been found by two methods: 
one in which the foil is repanelled after each Newton-Raphson iteration and the other 
involving the split-panel technique just described. The results from these two methods 
and for the same total number of panels N have been compared for several cavitation 
numbers and the split-panel method has been found to be equally robust and to 
converge to the same solution with a comparable number of iterations as the method 
of repanelling. The split-panel technique, however, allows the treatment of a continuous 
spectrum of cavity lengths (i.e. cavitation numbers) by using only one panelling 
arrangement. Moreover, in three dimensions, as will be described in $3,  the split-panel 
technique allows a smoother discretization of the trailing edge of the cavity planform 
in the spanwise direction. 

2.3.2. Regridding 
It is not immediately clear how to proceed from the first iteration cavity length to 

a converged nonlinear cavity length. If we ‘build on’ the resulting cavity by moving the 
panels which represent the cavity from the foil surface to the newly computed cavity 
surface and apply (13) there for the given cavitation number, then the result will be a 
cavity which does not close. In fact, since we know from experience with the fixed- 
length solution that the nonlinear a is always less than the first iteration a, we can 
predict that the first iteration cavity is too long. Therefore, building on the first 
iteration cavity usually results in a cavity for which 6 < 0. By trimming off the end of 
the cavity which lies inside the foil, the cavity length may be shortened and another 
iteration may be built on the resulting cavity shape. Repeating this procedure will 
eventually lead to the nonlinear cavity shape. Unfortunately, the convergence of this 
scheme has been found to be very slow. 

An accelerated scheme has been developed which takes advantage of the fact that the 
difference between the cavitation numbers from the first and the converged iterations 
with fixed cavity length, 1, behaves smoothly with 1. With a being the given cavitation 
number, the proposed algorithm is as follows: 

(i) solve the cavity problem (first iteration) with fixed cavitation number go = Q to 
find the corresponding cavity length 1,; 

(ii) solve the cavity problem with fixed cavity length lo for K iterations (i.e. 
regridding) and find the converged value of the cavitation number, Q;; 

(iii) define a new cavitation number, a, = v0 + (a, - a;); 
(iv) solve the cavity problem (first iteration) with fixed cavitation number Q, and find 

(v) solve the cavity problem with fixed cavity length I ,  for Kiterations, and find the 

(vi) apply a Newton-Raphson (secant) iterative solution for Q; - Q = 0, and find a 

(vii) repeat steps iv, v, and vi until Q; = u to within a preset tolerance. 
Figure 6 shows the first and last iterations of an example in which the preset 

tolerance was set to (ak-a)/o- < 0.01. Convergence to this tolerance took only one 

the correct cavity length 1, (n 2 1); 

converged value of the cavitation number, Q; (n 2 1); 

new cavitation number, Q,+~; 
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FIGURE 6. NACA16006 foil at a = 3", h = 0.1, v = 1.0, A = 0.50, (T = 0.731,1, = 0. (a) The first and 
last iterations in the convergence to the nonlinear cavity length for given cavitation number, along 
with the converged cavity shape. The 1 % nonlinear cavity is the final iteration, for which ((T: -(T)/(T 

< 0.01. (b) A comparison of the pressure distribution from the nonlinear cavity solution (solid line) 
to that from the fully wetted analysis of the cavities from the first iteration (asterisks) and last 
iteration (circles). 

Newton-Raphson iteration. Since the nonlinear cavitation number at each cavity 
length was found by iterating twice (K  = 2), the total number of regriddings for this 
case was equal to 4. Included in figure 6 is the converged nonlinear cavity (known, since 
r~ = 0.731 was chosen to correspond to the converged cavity solution with fixed length 
I = 0.4). Also shown in figure 6 is the pressure distribution on the foil and cavity from 
the converged nonlinear solution (plotted with a solid curve). Superimposed on this 
curve are two pressure distributions which resulted from an independent fully wetted 
analysis (Kerwin et al. 1987) of a modified foil consisting of the foil and cavity from 
the first iteration (plotted with asterisks) and the last iteration (plotted with open 
circles). Note that the pressure distribution (resulting from the fully wetted analysis) on 
the cavity from the last iteration satisfies the imposed dynamic boundary condition, 
and even the pressure distribution on the cavity from the first iteration comes very close 
to satisfying the condition. 

Figure 7 shows a comparison of cavity solutions from various methods. 
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FIGURE 7. Comparison of cavity shapes predicted from different methods for a NACA-16 foil at (a) 
u = 4", (b) 6" and (c) 8", and t / c  = 0.06 (left), and 0.09 (right); t is the maximum thickness of the 
hydrofoil. The ratio a/rr is kept fixed and equal to 0.055. Detachment at l&) = 0. ---, Linear; 
-0-m-0-, linear with leading-edge correction ; -o-o-o--, nonlinear, first iteration ; -, nonlinear, 
converged. 

Superimposed are cavities from linear theory, linear theory with leading-edge 
corrections (Kinnas 1991), the first iteration of the present method, and the converged 
nonlinear result. Results are shown for three angles of attack and two thickness-to- 
chord ratios. 

The following may be concluded by studying figures 6 and 7. First, the linear theory 
substantially overpredicts the converged nonlinear cavity area, as expected. Secondly, 
the linear theory including the nonlinear leading-edge corrections appears to be much 
closer (than conventional linear theory) to the nonlinear solution, especially at the 
leading-edge region. This is consistent with the fact that linear theory with leading-edge 
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corrections has been shown to predict the correct effect of foil thickness on the cavity 
size (Kinnas 1991). However, for small foil thicknesses and high angles of attack, the 
difference between linear theory with leading-edge corrections and nonlinear theory 
becomes larger. Therefore, the application of nonlinear theory is necessary in 
predicting hydrofoil or propeller cavitation accurately for arbitrary thickness to chord 
ratios and for on- as well as off-design conditions. Thirdly, the nonlinear cavity shapes 
from the first and converged iterations appear to be very close to one another. This 
result, in addition to the success of the first iteration in predicting the correct cavity 
shape for the given cavitation number, leads us to believe that the error introduced by 
ignoring the cavity regridding is small. 

3. Partially cavitating three-dimensional hydrofoil 
3.1. Formulation 

Consider a three-dimensional partially cavitating hydrofoil, shown in figure 8, subject 
to a uniform inflow (potential) The perturbation potential on the cavity and 
wetted hydrofoil is given by the three-dimensional Green's formula : 

(21) 
a i  

The hydrofoil and cavity surface are discretized into N chordwise and M spanwise 
quadrilateral panels, in the same way as in the case of fully wetted flow (full-cosine 
spacing in both directions) (Lee 1987; Kerwin et al. 1987). A typical panel arrangement 
for a rectangular hydrofoil with N = 100 and M = 20 (over the half-span) will be 
shown in figure 10. The panels representing the cavity are located on the hydrofoil 
surface underneath it. We use constant-strength source and dipole panels on the foil and 
constant-strength dipole panels on a presumed wake surface. In the present work we 
assume that the wake follows the unperturbed flow. The dipole strength in the wake, 
A&, is kept constant in the direction of the inflow. Its value in the spanwise direction 
may be variable and is set equal to the difference of potentials at the upper and lower 
trailing-edge panels on the same spanwise strip (Morino's condition, Morino & Kuo 
1974). The kinematic boundary condition on the wetted portion of the foil defines the 
source strength there in terms of the known inflow velocity: 

The dynamic boundary condition on the cavitating portion of the foil requires that 
the pressure everywhere on the cavity be constant and equal to the known cavity 
pressure, p e .  By applying Bernoulli's equation, the magnitude of the total velocity on 
the cavity, qt, is expressed as 

where CT andf(sf) are defined by (6) and (1 l), respectively. On the other hand, the velocity 
qt can also be expressed in terms of the derivatives of the total potential @ = djcn + 4 
with respect to the (generally non-orthogonal) curvilinear coordinates on the cavity 
surface? s (chordwise) and v (spanwise) as shown in figure 8: 

(24) 
(aqas)  [s"- (9. it) it] + ( a q a v )  [it- (s". it) s"] a@ 

\\s"x 6\12 an 
qt = V@ = +-h 

t The subscript c denoting the cavity surface is omitted for convenience. 
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FIGURE 8. Partially cavitating three-dimensional hydrofoil. The bottom sketch 
shows a typical spanwise strip. 

with s" and 0 being the unit vectors corresponding to the coordinates s and o, 
respectively, and with ii being the unit normal vector to the cavity. If s, v and n were 
located on the correct cavity surface, then a@/an would vanish. However, this is not 
the case since, as mentioned at the beginning of this section, the cavity curvilinear 
coordinates are approximated by those on the hydrofoil surface. Equations (23) and 
(24) may be combined to form an equation which is quadratic in the unknown chordwise 
perturbation velocity, a$/as. Solving this quadratic equation, we can express a$/as in 
terms of the cavitation number, the inflow potential, and the unknown crossflow 

with 0 being the angle between s" and 6 as shown in figure 8, and q, = Urn( 1 + a):. Note 
that is omitted from (25), since its value is second order in h as can be seen 
from (27). The correct root of the quadratic equation was determined by ensuring that 
the two-dimensional result, (lo), may be recovered from (25). 

Equation (25) is integrated once to form a Dirichlet boundary condition on $: 
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Equations (25) and (26) reduce to (10) and (14), respectively, in two dimensions. The 
integral on the right-hand side of (26) is determined by trapezoidal quadrature. 

The planform of the cavity, l (y) ,  is unknown and has to be determined as a part of 
the solution. However, the problem of determining the cavity shape at a prescribed 
('guessed') planform will be addressed first. The location of the cavity detachment 
point, I&) is an input parameter and is kept fixed throughout the solution. The effect 
of the location of the cavity detachment on the solution as well as a discussion on how 
to determine it, are given in 45.  For a given cavity planform, I(y), the discretized 
version of (21) is applied at the control points of all N x  M-Nsp panels. N is the 
number of panels distributed around the chord of the foil, M is the number of panels 
distributed spanwise, and Nsp is the number of panels which are 'split' by the trailing 
edge of the cavity (the panels are not adapted to the cavity boundary). To avoid 
ambiguity, in the case where the cavity trailing edge cuts more than one panel on the 
same spanwise strip, the split panel is defined as the one for which the segment 
connecting the midpoints of its sides along the span is intersected by the trailing edge 
of the cavity. The N x M -  Nsp unknowns are the dipole strengths (potentials) at the 
wetted panels and the source strengths at the cavity panels. The cavitation number, g, 
is known and equal to its prescribed value. The potentials on the cavity panels are given 
by (26) and the source strengths of the wetted panels are given by (22). The value of 
$(O) in (26) is also an unknown and is expressed via a cubic extrapolation in terms of 
the unknown potentials on the wetted panels on the same strip in front of the cavity. 
The source and dipole strengths on the split panels are defined as averages, as they were 
in two dimensions (see (20)), with the weights ZL and lR taken as the lengths at the 
midspan of the split panels. The value of the spanwise velocity a@/av on the right-hand 
side of (26) is unknown and is determined iteratively. Its initial value is set equal to the 
fully wetted crossflow and its subsequent values are determined from differentiation of 
the potentials from the previous iteration. The convergence of the crossflow term has 
been found to be virtually immediate, requiring at most one additional iteration. Once 
the problem has been solved for a guessed cavity planform, and a$/an at the cavity 
panels is known, the cavity height, h(s,v), can be determined by integrating the 
following partial differential equation : 

Equation (27) results from the condition V@.A, = 0 on the cavity, with V@ given by 
(24) and with ii, being the normal to the cavity surface. It can be proven that, to first 
order in h, ti, can be expressed as 

(28) 
- (ah/as) [s- (5.0) a1 - (ah/av) [a - (s". a) s"1 

lldx ill2 
+ ii, n, = 

where 8, 6 and ii correspond to the curvilinear coordinates of the hydrofoil surface 
under the cavity. The partial differential equation (27) reduces to the ordinary 
differential equation (16) in two dimensions. The partial differential equation is solved 
recursively by replacing the chordwise derivative, (ahlas), and the spanwise derivative, 
(ah/av), with two-point backwards-difference formulae. The height of the cavity at its 
trailing edge, 6(y) ,  will not be zero in general, unless we have guessed the correct cavity 
planform. 

The described method is applied to a rectangular hydrofoil with a NACA65a cross- 
section which is 5 % thick at the midspan, tapering elliptically to zero thickness at the 
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FIGURE 9. Spanwise and chordwise cavity thickness distributions predicted from the present BEM 
and for varying N x M .  Rectangular hydrofoil with a NACA65a cross-section with t i c  = 0.05 at 
midspan, tapering elliptically to zero thickness at the tip, ct = 4", cr = 0.4. The twist angle, in degrees, 
is given by a,(y) = 8ys - 12y2 (midspan at y = 0, tip at y = 1). The cavity planform is rectangular with 
l&) = 0.024 and [ (y)  = 0.5. 

tip, and an angle of attack of 4'. Note that in all ensuing figures, x will be normalized 
on the local chord length, and y will be normalized on the half-span. (In the test cases 
the hydrofoil is taken to be symmetric about y = 0, and thus only the flow about the 
half-span need be computed.) The cavity planform is also rectangular with l&) = 
0.024 and Z(y) = 0.5. The convergence of the predicted spanwise and chordwise cavity 
thickness distributions with number of panels is shown in figure 9. Perspectively plots 
of the cavity shapes corresponding to two other cavity planforms are shown in figure 
10. Figure 10 suggests that the three-dimensional behaviour appears to be an extension 
of the two-dimensional behaviour in that a cavity which is too short at a given radius 
has a locally positive 6, while one which is too long has a locally negative 6. Figure 10 
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FIGURE 10. Perspective plots of the cavity shapes predicted from the present BEM for given cavity 
planforms. Same rectangular hydrofoil and flow conditions as in figure 9. Rectangular cavity 
planform with (a) l (y )  = 0.2 and (b) Z(y) = 0.7. In both cases c = 0.4 and l,(y) = 0 for all y .  The 
cavity shapes are generated by drawing the predicted cavity thickness normal to the foil surface. 
Negative cavity thicknesses indicate that the given cavity planforms are not ‘correct ’. 

also suggests that the correct cavity planform for this example is roughly parabolic and 
probably zero near the tip of the foil and maximum at the midspan. A procedure for 
determining the correct cavity planform will be described in the next subsection. 

3.2. An algorithm for determining the three-dimensional cavity planform 
In a similar manner as in two dimensions we find the correct (discretized) cavity 
planform by solving, with respect to the M unknowns, I,, l,, . . ., I,, the system of 
equations 

(29) 
where 8, is the openness of the cavity trailing edge at the mth spanwise strip and I, is 
the cavity length at midspan of the same strip. The system of equations (29) is solved 
iteratively by applying an M-dimensional Newton-Raphson (secant method) scheme. 
The updated cavity lengths for the (k+ 1)th iteration are given as follows: 

8,(11, I,, . .., l M ;  g) = 0, m = 1 ,  ..., M ,  

- J-’dk + Lk (30) Lk+1 = 



where 
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and where J is the Jabobian, which has elements 

Ideally, we would like to approximate each element of the Jacobian by using a two- 
point finite-difference scheme (often called the secant method). This would mean that 
the system of equations given by (20), (21), and (25) would have to be solved M +  1 times 
for each Newton-Raphson iteration. Even in the case of an accurate initial guess, this 
scheme clearly would be prohibitively expensive. Fortunately, the iterative method 
may be accelerated by applying a locally scalar Newton-Raphson (secant method) 
scheme at each spanwise strip, which is equivalent to ignoring the off-diagonal terms 
of the Jacobian in solving (30) for the updated cavity planform. The second guess of 
the planform in the secant method is taken to be a perturbation of the initial guess by 
a fixed amount (4.0 % of the local chord length c,) in the direction determined by the 
sign (in an average sense) of Sly) which resulted from the initial guess. In general, this 
method will not be stable, due to the importance of the off-diagonal terms of the 
Jacobian, which have been ignored. However, numerical damping has been found to 
render the method stable by prohibiting each cavity length 1, from changing by an 
amount greater than a multiple of the local a,, 1A1,{ = Ik * S,l. In the event that IS,I 
is large, the change in length is bounded by IAIJ 9 0 . 0 5 ~ ~ .  The convergence history 
has been found to be weakly dependent on k, and k = 10 yields satisfactory 
convergence. Equation (29) is satisfied within a desired tolerance for the maximum 
value of 16,1, which we have taken equal to 8 x 

Originally, the cavity trailing edge was adjusted at each spanwise location to match 
the panel boundaries closest to it. In that case, the objective was to ‘trap’ the zero- 
thickness trailing-edge cavity inside one panel at each spanwise location and then to 
interpolate the solutions corresponding to the ‘left’ and ‘right’ boundaries of the 
panel. However, this algorithm for determining the cavity planform was found to be 
very unstable and to converge to different planforms with increasing number of panels. 
The failure of the scheme was attributed to the discretization of the cavity trailing edge 
which in some cases resulted in highly discontinuous cavity planforms in the spanwise 
direction. In order to produce smoother discretizations of the cavity planform in the 
spanwise direction, the split-panel technique, described already, was devised. This 
technique also allowed for a continuous spectrum of cavity lengths in the chordwise 
direction. The split-panel technique has been found to substantially improve the 
convergence of the method to the correct cavity planform. 

To supply the reader with some understanding of the three-dimensional behaviour 
of the cavity openness in the vicinity of the correct cavity planform, determined by 
applying the described method, figure 11 shows the spanwise distribution S(y) for 
various cavity planforms on a rectangular hydrofoil. Among these cavity planforms, 
some lie to the left of the zero-6 planform (curve 5 in the figure) and some lie to the 
right. Notice that 6(y) corresponding to each planform that lies to the left of the correct 
planform is everywhere positive while for those corresponding to the planforms to the 
right of the correct one, 6(y)  is everywhere negative. Figure 11 can be viewed as the 
analogue of figure 4 in three dimensions. 

When searching for the correct cavity length on two-dimensional hydrofoils, (19) 
was solved subject to the condition dS/dl< 0, in order to exclude ‘long’ unstable 
partial cavities. However, it was not necessary to impose a similar condition when 
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FIGURE 1 1 .  (a) Spanwise cavity openness distributions, S(y), for the various cavity planforms shown 
in (b). Same rectangular hydrofoil and flow conditions as in figure 9. In all cases B = 0.4. Each S(y) 
distribution corresponds to the planform with the same number. 

searching for the correct cavity planform on three-dimensional hydrofoils. In figure 12, 
the cavity planforms predicted by the present method at different cavitation numbers 
are shown for the elliptic hydrofoil (whose complete geometry is described in the next 
section) of maximum thickness to chord ratio equal to 0.06 at all spanwise locations. 
Notice that as the cavitation number decreases, the predicted cavity planform becomes 
longer at all spanwise locations until the cavity approaches the trailing edge at the 
midspan of the foil. This behaviour appears to be different from the two-dimensional 
one where the minimum value of cavitation number occurs before the cavity reaches 
the trailing edge, at around 75 % of the chord. For all cavity planforms shown in figure 
12, as well as those shown in the rest of the paper, it has been found that the slopes 
a8,/alm at all spanwise locations of the converged solution were negative, even though 
this was not required in the solution. The above observations indicate that there is only 
one partially cavitating solution for the three-dimensional hydrofoil geometries which 
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FIGURE 12. Predicted cavity planforms at various cavitation numbers on an elliptic hydrofoil with t / c  
= 0.06, at u = 4'. The twist angle, in degrees, is given by u,(y) = 8y3 - 12y2 (midspan at y = 0, tip at 
y = 1). 

were investigated. However, there may be solutions (for example with sharp changes 
of the cavity length in the spanwise direction) which we have missed. The subject of 
multiple solutions will not be addressed, beyond conjecture, in this work. 

To summarize, in the present algorithm we start from an initial guess and adjust the 
cavity planform globally until the thickness at its trailing edge becomes equal to zero. 
At each trial cavity planform, the nonlinear (first iteration) three-dimensional cavity 
solution is achieved with the cavitation number being known. In contrast, in the 
algorithm developed by Jiang & Leehey (1977) and Lee (1979), the cavity planform is 
adjusted locally at each spanwise location (with the effect of the other strips accounted 
for in an iterative sense) until the computed cavitation number becomes equal to the 
desired one. At each trial cavity length, the linearized cavity solution with zero cavity 
thickness at the trailing edge is obtained and the corresponding unknown cavitation 
number is determined. 

3.3. Results and numerical validation 
In this section, results are discussed for a rectangular hydrofoil and two elliptic 
hydrofoils at various angles of attack and various cavitation numbers. All foils that we 
considered have a maximum chord to span ratio equal to 0.17. In each example, the 
foil is twisted in the spanwise direction such that the angle of attack is zero at the tip 
(this is true also in figures 9-12). This is done to ensure that there is no tendency to 
supercavitate at the tip, since the subject of supercavitation has not been addressed in 
this work. The amount of twist at different spanwise locations y (0 < y < I)  is taken 
equal to -a(3y2-2y3), with a being the angle of attack (twist is positive in the 
direction of positive a). 
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FIGURE 13. (a) Convergence of cavity planform with numbers of chordwise and spanwise panels. (b)  
The convergence history for the 100 x 20 grid. Same rectangular hydrofoil and flow conditions as in 
figure 9. 

FIGURE 14. An example of an adaptive grid (the one used for validation of the 
cavity solution in figure 15). 

Figure 13 (a) shows the converged cavity planform on a rectangular hydrofoil for 
various panel arrangements. The initial guess in each case was a uniform cavity length 
( l (y )  = 0.4 for all y ) .  In an effort to show that the solution converges, the number of 
panels has been varied from 1600 (80 chordwise, 20 spanwise), to 2400 (80 x 30). Figure 
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FIGURE 15. Validation of the cavity solution. Pressure distributions shown at various spanwise 
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a = 3", a / u  = 0.105, lD(y)  = 0.004. . . . ., Fully wetted solution; -, cavity solution. 

13(b) shows the sequence of cavity planforms in the convergence history for the 
100 x 20 grid. 

To validate the solution, a new three-dimensional hydrofoil geometry is created by 
combining the computed cavity and foil to form a single surface, where the grid on the 
new foil has been adapted to conform to the cavity planform and shape, (as for example 
is shown in figure 14). In other words, the panels representing the cavity are placed on 
the predicted cavity surface. The flow around the new foil is then analysed with an 
independent fully wetted analysis method (Kerwin et al. 1987) and the resulting 
pressure distribution is compared to the pressure from the cavity solution. The 
pressures from the cavity solution are computed by differentiating the potentials from 
the cavity solution on the surface of the foil to find velocities and then by applying 
Bernoulli's equation. If the cavity shape is the correct one which corresponds to the 
applied dynamic boundary condition, then the two pressure distributions will match. 
The discrepancy between the two pressure distributions is therefore a measure of the 
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FIGURE 16. Same as figure 15 but for a = 5". 

accuracy of the cavity solution presented. We refer to the comparison of the two 
pressure distributions as the 'pressure validation test'. Figures 15 and 16 show this 
comparison, which in general is very good. Notice that the pressure distribution from 
the cavity solution is constant everywhere on the cavity, as required by the dynamic 
boundary condition (based on the same formulation as the pressure calculation). In 
addition, notice that the comparison between the two pressure distributions 
deteriorates with increasing angle of attack. This indicates that the shape of the cavity 
from the first iteration is further from the correct nonlinear shape for higher angles of 
attack. More importantly, however, the results for two-dimensional hydrofoils, 
discussed in $2, have shown that the difference between the first iteration and 
converged cavity lengths and volumes is not substantial, even at moderately high 
angles of attack (see figure 7). In other words, from our experience in applying the same 
validation test in two dimensions, the pressure distributions from the first and the 
converged nonlinear solutions have a larger error than the corresponding cavity extents 
and shapes (see for example figure 6) .  
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FIGURE 17. Expanded cavity planform for an elliptic hydrofoil with (a) t / c  = 6% and (b) 
t / c  = 9%, at a = 4", l,(y) = 0, u = 0.55. Also shown are cross-sections of the foil and cavity at 
midspan. 

Also noteworthy in figures 15 and 16 is the fact that the pressures near the tip, away 
from the cavitating portion of the foil, are higher than the cavity pressure (this is also 
true for the other non-cavitating tip sections which are not shown in the figures). If this 
were not the case, the converged cavity planform would not be correct. 

The sample runs and validation tests for this work were done on an IRIS 4D/25 TG. 
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As an example, the CPU time required to produce one of the perspective plots in figure 
10, which used a 100 x 20 grid, was 40 minutes. 

Finally, results for the two elliptic three-dimensional hydrofoils are shown in figure 
17. Both hydrofoils have the same planform and the appropriate twist as discussed in 
the beginning of this subsection. They have a NACA65a thickness distribution in the 
chordwise direction with a constant maximum thickness to chord ratio in the spanwise 
direction. The maximum thickness to chord ratio for these hydrofoils is 0.06 and 0.09, 
respectively. They are both subject to a uniform inflow at an angle of attack a = 4" and 
at a cavitation number n = 0.55. Figures 17 and 18 show that the predicted cavity 
extent (in both chordwise and spanwise directions) and volume decrease with 
increasing thickness. A similar nonlinear effect of foil thickness on the cavity shape has 
already been shown in two dimensions by many researchers (Tulin & Hsu 1980; 
Uhlman 1987; Kinnas 1991). The pressure validation test was also done for the elliptic 
hydrofoil, and the pressures at the fully wetted tip were checked to confirm that the 
cavity planforms are acceptable. 

4. Comparison to experimental measurements 
In order to validate the present method, a systematic comparison to experimental 

results is desirable. Since the main contribution of this work is the accurate prediction 
of partial cavity planforms on three-dimensional hydrofoils, comparison to mea- 
surements in steady three-dimensional flow is preferable. Unfortunately, we were 
unable to find published experimental measurements of steady flow, partially 
cavitating, three-dimensional hydrofoils in the literature. In order to fill the void, we 
decided to perform a simple experiment in the MIT Marine Hydrodynamics Lab 
Variable Pressure Water Tunnel. Lack of tunnel time, as well as lack of funds for 
design and manufacture of equipment, drove us to use an existing wing and fairing 
configuration.? The goal of the experiment was to measure the cavity planform in 
steady uniform flow at reduced ambient pressure and to make comparisons to the 
results of the present method. The experimental cavitation number was obtained by 
measuring the streamwise velocity component, using a laser-Doppler velocimeter, at 
points along a line approximately normal to the cavity surface, including a point on or 
very near to the cavity surface. This was done at a location near the wing root where 
the spanwise flow on the cavity surface was expected to be negligible and at a chordwise 
position where the (unperturbed) streamwise direction was nearly tangent to the cavity. 
At this location, the measured velocity provides a very good estimate for the cavity 
velocity qe. The cavitation number is then computed from the well-known expression 
n = 1-4:. This method of determining (+ had previously been applied by Kinnas & 
Maze1 (1992) to compare numerical results and experimental measurements of the flow 
around two-dimensional supercavitating hydrofoils. Its origin was influenced by the 
inability to obtain an accurate estimate of the cavity pressure (used in the definition of 
cr), in part because the vapour pressure varies strongly with temperature and, in 
addition, because of the unknown air content inside the cavity. The experiment was 
performed for the wing described by figure 18 and table 1. The wing, a windsurfer fin 
made by FINTECH, was mounted vertically in the tunnel, attached to a finbox which 
in turn was attached to the dynamometer shaft. While forces were not measured in this 
experiment, the dynamometer setup was convenient for our configuration. The finbox 
is an aluminium rectangular box serving as a housing for the standard Tuttle box which 

t Courtesy of Professor Sheila Widnall of MIT Department of Aeronautics and Astronautics and 
Graduate Student William Gorgen. 
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YlR 
0 
0.0757 
0.1270 
0.2297 
0.3324 
0.4351 
0.5378 
0.6405 
0.7432 
0.8459 
0.8973 
0.9486 
1 .oooo 

X A E I R  

- 
0.2197 
0.2150 
0.2033 
0.1914 
0.1772 
0.1606 
0.1420 
0.1194 
0.0916 
0.0743 
0.0519 
- 

x'PE/ 

- 
- 0.1527 
-0.1526 
-0.1558 
- 0.1558 
-0.1537 
- 0.1477 
-0.1371 
-0.1213 
-0.0976 
-0.0801 
-0.0566 
- 

CID 
0.1902 
0.1862 
0.1840 
0.1795 
0.1736 
0.1654 
0.1540 
0.1395 
0.1203 
0.0945 
0.0772 
0.0542 
0 

t*,lD 
0.0213 
0.021 1 
0.0210 
0.0206 
0.0199 
0.0188 
0.0170 
0.0148 
0.0126 
0.0096 
0.0067 
0.0030 
0 

rakelD 
0 
0 
0.0012 
0.0049 
0.0079 
0.0109 
0.0135 
0.0156 
0.0175 
0.0183 
0.0182 
0.0179 
0.0179 

TABLE 1. Geometry of the experimental wing: X,, and X,, are the measured x-components of the 
leading edge and trailing edges of the wing, respectively, from which the other quantities were 
deduced. R = +D; R is the half-span of the wing and t its thickness. 

typically connects the fin to the board. Since the finbox is a bluff body with sharp 
corners, it was necessary to use a fairwater to streamline the flow. The angle of attack 
of the wing was a = 6.5" and the flow speed was U, = 6.83 m/s. Measurements were 
made for two cavitation numbers, g1 = 1.084 and cr2 = 1.148, corresponding to 
ambient pressures of 320 and 370mmHg, respectively. The position of the cavity 
detachment and reattachment points were measured at six spanwise locations, using 
the laser and its motion/location instrumentation. 

The computations were performed for the measured cavitation numbers, using 
the measured detachment points as input. The detachment points were taken at 
I,(y)/c(y) = 0.024, with c ( y )  being the local chord, for both cavitation numbers. 
The computations assume that the wing is attached to an infinite flat plate, in place of 
the fairwater, allowing the reflection of the wing across the plate to account for the 
presence of the wall. A comparison of the measured and predicted cavity planforms is 
shown in figure 19. One important characteristic of the solution near the tip should be 
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-1.1 

xlR xlR 
FIGURE 19. Measured (-*-*-*-) and predicted (-) cavity planforms. 

-0.55 -0.35 -0.15 0.05 0.25 

(a) u1 = 1.084, (b) U, = 1.148. 

mentioned here : the method is not able to find a closed partial cavity in the tip region, 
which indicates that the solution at the tip should be a supercavity matched to a local 
tip solution to capture the effect of the cavitating tip vortex. The presence of the tip 
vortex was also detected in the experiment. 

The comparison shown in figure 19 shows good agreement between the prediction 
of the present method and the experimental measurements. However, several 
cautionary comments should be made. First, owing to a difficulty in the measurement 
of the angle of attack, OL is accurate only to f 0.5". Second, the analysis does not include 
the effect of the tunnel sidewalls, nor that of the tunnel floor. However, owing to the 
relatively small dimensions of the wing and its cavity, the wall effects are expected to 
be small. Next, the cross-section of the wing was assumed to be a member of the 
NACA65a series (Abbott & Von Doenhoff 1959) with the measured maximum 
thicknesses. Although this section is believed to be close to the actual cross-section, the 
wing was hand-shaped and the exact cross-section is not necessarily identical to the one 
used in the computations. Only the maximum chordwise thickness was measured; no 
attempt was made to measure the thicknesses throughout the chord. The chordwise 
position of the maximum thickness was measured to be close to 40 % of the local chord 
length throughout the span. The fact that this is true also of the NACA65a section led 
to its selection. Finally, this experiment was not complete. A more systematic 
experiment would measure planforms for a greater number of cavitation numbers and 
angles of attack. Time limitations prevented extensive data taking for the current work. 

In the light of these comments and observations, we emphasize here the qualitative 
agreement between theory and experiment. The good agreement evident in figure 19, 
while promising, is not sufficient validation of the method. Further experimental work 
is planned for the future. 

5. Conclusions and future work 
In this work, a general boundary-element method was presented for determining the 

cavity shape for two- and three-dimensional partially cavitating hydrofoils of arbitrary 
geometry. The two-dimensional analysis was done in the framework of the two 
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FIGURE 20. Sensitivity of predicted cavity planform to the location of the detachment line, Z,(+y). 
Planar rectangular wing, aspect ratio = 5.9, NACA65a cross-section, 9 % thick at midspan, tapenng 
elliptically to zero at the tips, (T = 0.5, a = 3", N = 80, M = 20. -, ID(y) = 0; ++++, I,(y) = 
0.014; -*-*-*--,  ID(^) = 0.024. 

relevant boundary-value problems : one in which the cavity length is specified, and the 
other in which the cavitation number is known. The results of our two-dimensional 
study, which were summarized in 42.3.2, suggest that a remarkably accurate estimate 
of the fully nonlinear cavity solution may be determined without regridding, which 
could be prohibitively expensive in solving the three-dimensional problem. A robust 
and efficient method for finding the three-dimensional cavity planform and shape has 
been developed for the case where the cavitation number is known. In so doing, the 
fully three-dimensional behaviour is captured, including the nonlinear effect of foil 
thickness on cavity size. 

The ability of the present method to treat an arbitrary cavity planform on a fixed 
panel discretization, makes it very suitable for the prediction of the unsteady three- 
dimensional hydrofoil or propeller sheet cavitation. Indeed, the method has already 
been extended by the authors to predict the flow around supercavitating and mixed 
partial/supercavitating hydrofoils (Fine & Kinnas 1992) and finally, to predict the 
unsteady cavitating flow around marine propellers in non-uniform inflows (Kinnas & 
Fine 1992; Fine 1992). However, for the method to be complete, it must ultimately 
account for the effects of viscosity. Arguably, the two regions where viscosity plays the 
most influential role are in the vicinity of the cavity detachment close to the blade 
leading edge, and in the cavity wake. In the future, a boundary-layer analysis will be 
incorporated to determine the correct detachment point, which experiments have 
shown to be closely correlated to the viscous flow in front of the cavity (Arakeri 1975; 
Franc & Michell985). These and other experiments have also shown that the pressures 
on the wetted foil in front of the cavity may be smaller than the pressure inside the 
cavity. The sensitivity of the solution to the location of the cavity detachment point can 
be seen in figure 20. It is apparent from this figure that the predicted cavity planform 
is affected substantially by the location of the detachment point. It should be noted that 
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the cavity planform with l&) = 0 predicts negative cavity thicknesses up to 
approximately 3 %  of the chord at the leading edge for a large part of the midspan 
region. It is thus rejected as a non-physical solution. The other two cavity planforms, 
also shown in figure 20, predict cavities with positive thickness everywhere. Their 
viability as physical solutions though, will depend on the viscous flow analysis in front 
of the detachment point as mentioned earlier. The physical solution will not necessarily 
correspond to a uniform l,(y) across the span. To account for the viscous wake of the 
cavity, in the context of potential flow, an open cavity termination model may be 
utilized, followed by a wake with thickness equal to the displacement thickness of the 
corresponding boundary layer (Fabula 1962). The boundary-layer profile behind a 
partial cavity has been measured in experiments (Fine 1988) and its displacement 
thickness has been found to be appreciably larger than that of the boundary layer in 
fully wetted flows at the same location on the foil. Incorporating an open cavity model 
in our method appears to be trivial (at least in the first iteration nonlinear solution), 
and can be accomplished by changing the right-hand side of (29) from zero to the 
desired distribution of openness in the spanwise direction. In addition, the chordwise 
variation of the boundary layer in the wake of the cavity may be determined by 
coupling the present method with a boundary-layer solver. 

Support of this research has been provided by the Applied Hydromechanics Research 
Program administered by the Office of Naval Research (Contract : NOOO14-90-5-1086). 
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